Keeping it together: mechanisms of intersegmental coordination for a flexible locomotor behavior.

نویسندگان

  • Joshua G Puhl
  • Karen A Mesce
چکیده

The coordination of multiple neural oscillators is key for the generation of productive locomotor movements. In the medicinal leech, we determined that activation and coordination of the segmental crawl oscillators, or unit burst generators, are dependent on signals descending from the cephalic ganglion. In nearly intact animals, removing descending input (reversibly with a sucrose block) prevented overt crawling, but not swimming. Cephalic depolarization was sufficient for coordination. To determine whether descending signals were necessary for the generation and maintenance of posterior-directed intersegmental phase delays, we induced fictive crawling in isolated whole nerve cords using dopamine (DA) and blocked descending inputs. After blockade, we observed a significant loss of intersegmental coordination. Appropriate phase delays were also absent in DA-treated chains of ganglia. In chains, when one ganglion was removed from its neighbors, crawling in that ganglion emerged robust and stable, underscoring that these oscillators operate best with either all or none of their intersegmental inputs. To study local oscillator coupling, we induced fictive crawling (with DA) in a single oscillator within a chain. Although appropriate intersegmental phase delays were always absent, when one ganglion was treated with DA, neighboring ganglia began to show crawl-like bursting, with motoneuron spikes/burst greatest in untreated posterior ganglia. We further determined that this local excitatory drive excluded the swim-gating cell, 204. In conclusion, both long-distance descending and local interoscillator coupling contribute to crawling. This dual contribution helps to explain the inherent flexibility of crawling, and provides a foundation for understanding other dynamic locomotor behaviors across animal groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary, sufficient and permissive: a single locomotor command neuron important for intersegmental coordination.

In this report we posed the overarching question: What multiple contributions can a single neuron have on controlling the behavior of an animal, especially within a given context? To address this timely question, we studied the neuron R3b-1 in the medicinal leech. This bilaterally paired neuron descends from the cephalic ganglion and projects uninterrupted through the segmental ganglia comprisi...

متن کامل

Intersegmental coordination during human locomotion: does planar covariation of elevation angles reflect central constraints?

To study intersegmental coordination in humans performing different locomotor tasks (backward, normal, fast walking, and running), we analyzed the spatiotemporal patterns of both elevation and joint angles bilaterally in the sagittal plane. In particular, we determined the origins of the planar covariation of foot, shank, and thigh elevation angles. This planar constraint is observable in the t...

متن کامل

JN-00289-2006.R2 Intersegmental coordination during human locomotion: does planar covariation of elevation angles reflect central constraints?

To study intersegmental coordination in humans performing different locomotor tasks (backward, normal, fast walking, and running), we analyzed the spatiotemporal pattern of both elevation and joint angles bilaterally in the sagittal plane. In particular, we determined the origins of the planar covariation of foot, shank and thigh elevation angles. This planar constraint is observable in the thr...

متن کامل

Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator.

1. This paper reports the results of an investigation of the basic mechanisms underlying intersegmental coordination in lamprey locomotion, by the use of a combined mathematical and biological approach. 2. Mathematically, the lamprey central pattern generator (CPG) is described as a chain of coupled nonlinear oscillators; experimentally, entrainment of fictive locomotion by imposed movement has...

متن کامل

Intersegmental Coordination of Cockroach Locomotion: Adaptive Control of Centrally Coupled Pattern Generator Circuits

Animals' ability to demonstrate both stereotyped and adaptive locomotor behavior is largely dependent on the interplay between centrally generated motor patterns and the sensory inputs that shape them. We utilized a combined experimental and theoretical approach to investigate the relative importance of CPG interconnections vs. intersegmental afferents in the cockroach: an animal that is renown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2010